乳酸菌由来リボソームによる細胞のリプログラミング機構 **P-23** 太田訓正 (熊本大学大学院生命科学研究部)

Abstract

我々は、ヒト皮膚細胞が乳酸菌を取り込むと多能性を 獲得することを報告した (Ohta et al., PLOS ONE, e51866, 2012)。その後、乳酸菌由来のリボソームを ヒト皮膚細胞に取り込ませると、細胞塊が形成され、様 々な多能性マーカーを発現し、三胚葉由来の細胞へと 分化したことから、リプログラム物質がリボソームであ ることを見出した (Ito et al., Scientific Reports, 8:1634, 2018)。振り返ってみると、「ヒト皮膚細胞が乳」 酸菌を取り込むと宿主細胞をリプログラミングする」と いう現象は、乳酸菌体内に充満するリボソームに起因 する結果であったと考えれば得心がいく。本報告会で は、リボソームによる細胞リプログラミング機構につい てご紹介する。 リボソームを構成するタンパク質(L38)を産生しない KOマウスでは、肋骨が一本多く形成されることから、 個々のリボソーム構成タンパク質は発生過程において 様々な機能を有することが示唆されている(Kondrashov et al., 2011)。現在は、リボソーム構成タ ンパク質の中から、細胞リプログラミングに関与するタ ンパク質の同定を目指している。

(4) Purification strategy

(9) Incorporation is enhanced by Endocytosis

and Trypsinization

Microsphere (50 nm)

(1) Schematic drawing of the sphere formation

30 mm culture dish

(5) Cell clusters formation by LAB-ribosomes

concentration (uM)

(10) Transcriptome of the RICs

(A)

Cell 173, 1–14, March 22, 2018

Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis

Cell

Jacob C. Ulirsch, ..., Vikram G. Panse Steven A. Carr, Vijay G. Sankaran

> Correspondence sankaran@broadinstitute.org

A global reduction in ribosome levels in Diamond-Blackfan anemia profoundly d-Blackfan Anemia transcripts, thereby impeding erythroid lineage commitment

Cell clusters express mutipotent markers (6)

LAB

(2) Sphere formation by HDF cells with LAB

300 µm

Generation of neuron and cardiomyotome (7)

Their work reveals how ribosome levels can modulate cellular differentiation

(3) Bacterial Reprogramming

Reprogramming Adult Schwann Cells to Stem Cell-like Cells by Leprosy Bacilli **Promotes Dissemination of Infection**

Toshihiro Masaki,1,2,4 Jinrong Qu,4 Justyna Cholewa-Waclaw,1,2 Karen Burr,2 Ryan Raaum,4 and Anura Rambukkana^{1,2,3,4,*} ¹MRC Center for Regenerative Medicine ²Center for Neuroregeneration ³Center for Infectious Diseases University of Edinburgh, Little France Campus, Edinburgh, EH16 4UU Scotland, UK ⁴The Rockefeller University, York Avenue, New York, NY 10065, USA *Correspondence: a.rambuka@ed.ac.uk (Cell, 152, 51-67, 2013) http://dx.doi.org/10.1016/j.cell.2012.12.014

(8) Expression analysis

POU5F1

PLA2G2A

TFAP2C POLR2B

SFRP1 RBPJ

SMAD2 POLR2J

POLR2I

NANOG

POLR2L

POLR2K POLR2G SOX4

ZFP36L2

PBX1 VPS72

KIT

LDB2 LRP5 TCF7L2 RAF1

HES1

HMGA2

(D)

Reprogramming of intestinal stem cells (ISCs)

eR1-GFP mouse

mitochondori

Does ISCs incorporate ribosome?

Enteroid

